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ABSTRACT 
The dynamics of a thermoelastic rod of finite length are studied under action of periodic external force and thermal 

sources. The model of connected thermoelasticity are used, taking into account the effect of temperature on the 

elastic deformation and stresses and as well as the effect of elastic deformation speed on the temperature field in 

the rod. Based on the method of generalized functions the analytical solutions of boundary value problems of the 

stationary vibration of a thermoelastic rod for various types of boundary conditions are constructed. The computer 

implementation of the boundary value problems are performed. The calculation results of movement and 

temperature of the rod at different frequencies, and a comparative analysis of solutions are presented. 

INTRODUCTION  
The core design is widely used in engineering as coupling and transmission units for the structural elements for 

different machines and mechanisms. During the operation they are subjected to variable mechanical and thermal 

influences that create a complex stress-strain state in designing elements, depending on their temperature, which 

affect at their reliability and durability. Therefore, the determination of thermoelastic stresses in rod structures 

with regard to their mechanical properties (especially the thermoelasticity) refers to actual scientific and technical 

problem. 

 

Mathematical modeling of thermodynamic processes in rods leads to solving the boundary problems for 

thermoelastic media. There are various models of thermoelastic media. In the study of slow dynamic processes 

the unconnected  thermoelasticity model are frequently used, which does not take into account the influence of 

elastic properties of medium on its temperature field. But fast vibratory processes in designs affect at the 

temperature field. In the study of such processes the coupled thermoelasticity model should be used, which is 

considered here to simulate the dynamics of thermoelastic rods. 

 

In [1] there were constructed the fundamental and generalized solutions of thermoelasticity equations in a spatially 

one-dimensional case. They determine the thermoelastic stress-strain state of infinite thermoelastic rod under 

action of various periodic forces and heat sources. They may be described by distributions, both regular and 

singular, allowing to research the effect of concentrated sources of various types. Here we consider the boundary 

value problems (BVPs) of the dynamics of a thermoelastic rod of finite length at stationary oscillations. Four types 

of boundary conditions at each end of the rod have been considered. Based on the method of generalized functions 

the analytical solutions of BVPs are constructed and investegated. 

 

THE MOTION EQUATIONS OF A THERMOELASTIC ROD 
HARMONIC OSCILLATIONS 

Let consider a  thermoelastic rod with the length 2L . The longitudinal displacements of a rod u and  rod 

temperature   are described by the mixed hyperbolic – parabolic equations of second order in the form [2]:  

for , 0x L t   
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, , , ( , ) 0
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                                          (1) 

here  ( , )x t   is relative temperature  ( , ) ( ,0)T x t T x   ,  T is absolute temperature,    is the linear 

density, rigidity EJ  and thermoelastic constants , ,    are given, c is the speed of elastic  
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waves in a rod: 
EJ

c


 . The symbol after the comma denotes the partial derivative with respect to the  

specified index variable (for example 

2

, , ,x xt

u u
u u

x x t

 
 
  

).  

 

Let assume that  the rod is subjected to the actions of periodic longitudinal force  1 ,F x t and  heat source 

 2 ,F x t  of the type: 

1 1( , ) ( )exp( ), 1,2,F x t F x i t j                                            (2) 

  is the frequency of oscillation. 

Thermoelastic stresses in the rod  ,x t  are defined by the Duhamel-Neumann low: 

2

,xc u                                                            (3) 

The boundary conditions at the ends of the rod may be different. Here we formulate them for four boundary value 

problems (BVP) which are taken in the classical theory of thermoelasticity [1]: 

1 BVP                     , exp , ( , ) exp( ); 1,2j j j ju x t w i t x t i t j                                (4)1 

2 BVP                    , exp , , ( , ) exp( ); 1,2j j x j jx t P i t x t q i t j                              (4)2  

3 BVP                    , exp , , ( , ) exp( ); 1,2j j x j ju x t w i t x t q i t j                            (4)3 

4  BVP                      , exp , ( , ) exp( ); 1,2j j j jx t P i t x t i t j                               (4)4  

where ,j jw  ,
jP , 

jq are  the complex amplitudes of displacements, temperature, stresses and heat flow on the 

ends of the rod. 

 

Also we can consider the boundary value problems with  the one type of boundary conditions on the left end  of 

the rod (any from (4)) and other type of boundary conditions on the right end. 

 

By virtue of the harmony of acting forces (2) and boundary conditions (41-44), the solution can be presented in the 

same form: 

        , , expu u x x i t     

where the complex amplitudes satisfy the following system of differential equations: 

1

2

2 2
1( )

( )

, , 0,

, , 0.

xx x

xx x

c x

x

u u F

i i u F

  

   

   

   
                                         (5) 

We define the complex amplitudes of solutions satisfying (5) and one of the conditions (4), respectively to solved 

BVP. 

 

METHOD OF GENERALIZED FUNCTIONS. ANALYTICAL SOLUTION 
To solve the BVP we used the method of generalized functions [3,4]. On this basis, using a matrix of fundamental 

solutions  ,U x t , the analytical solution can be represented in the form 

 [4]:  for , 0x L t   
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                 (6)2 

2c  
(

.  Here the convolution for regular forces and heat sources are calculated by formulae: 

 
2

1

* ( ) ( , )

L

j L

j j
j j

F U H L x F y U x y dy
k k


 

                                           (7) 

 H(x)  is Heaviside function. For singular 1 2
ˆ ˆ,F F  you should use the definition of convolution (see [3]). 

Formulas (61)- (62) determine the displacement and the temperature inside the rod when  the  displacements, 

stresses, temperatures and heat flows at the ends of a rod are known. However, for each boundary value problem 

it's known only four boundary values of the complex amplitudes.  For remained four unknown boundary conditions 

we can get the resolving system of equations, based on the boundary conditions at the ends of the rod and the 

asymptotic properties of Green matrix  ,U x t  and its derivatives at 0x  . 

 

THE MATRIX OF FUNDAMENTAL SOLUTIONS ( , )xU   

The fundamental matrix ( , )xU   was constructed earlier in [1] by use Fourier transform of distributions. It has 

the following form: 
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where 1 2,   are the roots of characteristic equations of the system (5): 
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2

2 1 2 1 2 1
1,2 2

4
2

i ic k i c k i c k
c


       

  
       

  

 

They depend only on the three thermoelastic constants:  
2 1, ,c c k     . Dimension [α]=[β]=[ω]. 

The components 
j

kU  are continuous at a point x = 0, and their derivatives at this point have a discontinuity of the 

first kind: 

 

                 
a                                                                                    b 

 

          
c                                                                d 

Figure 1 - Components U   by =1      ( =0.1,   с=1, k=1, η=1). 

 

 

                                (8) 
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Their asymptotic properties are described in detail in [1]. 

 

At figures 1  you  can  see U ( ij ijRU Re( ), IU Im( )j j

i iU U  ), which describe the displacements and 

temperature of rod sections in point x in time moments  

2 2
, , , 0, 1, 2...

2
n kt n t k n k

  

  
       

Time nt  corresponds  to  real part  U  and  kt   to its imaginary part.  

 

THE RESOLVING EQUATIONS FOR BOUNDARY VALUE PROBLEMS 
In the paper [4] it was shown, that the unknown amplitudes of the boundary functions of all BVPs satisfy to 

resolving system  of equations, which   can be represented in the matrix form: 
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                                                             (9) 

where components of matrix A1 and A2 are equal to 
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Components of vector b depend on acting external forces and heat sources: 
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Here we denote (....)
x L

, the value of expressions in corresponding point x L  .  

This system from 4 linear algebraic equations connects 8 boundary values of complex amplitudes of 

displacements, stresses, temperature and heat flows. 

 

It's easy to build resolving  system of linear algebraic equations for any of the considered boundary value problems 

(41), (42), (43),  (44)  leaving in the left side of terms with unknown boundary values of the unknown functions and 

shifting to the right side with the known boundary values. 

 

BOUNDARY VALUE PROBLEM 1 AND ITS SOLUTION 
We consider here the first boundary value problem by known temperatures and the movement at the ends of the 

rod (41),. In this case, the resolving system of equations has the form: 
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21 1

4 4 4 4
32 2
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                                              (10) 

where the matrices A and B are expressed through the elements of the matrices A1 and A2 so 

 

11 13 11 1312 14 12 14

21 23 21 2322 24 22 24

31 33 31 3332 34 32 34

41 43 41 4342 44 42 44

1 1 2 21 1 2 2

1 1 2 21 1 2 2
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1 1 2 21 1 2 2

A A A AA A A A

A A A AA A A A
A B
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A A A AA A A A

  
  

   
     
   
      

 

 

Solving this system we determine unknown stresses and heat flow on the ends of a rod. Then, using (61), (62), we 

calculate displacement and temperature in any point of a rod. 
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The calculations were performed for a medium with dimensionless parameters: 

1, 1, 1, 1, 3, 1L k c        . 

 

On the figures 3, 5, 7,9 (a, b) you see the real and imaginary parts of the complex amplitudes of displacement and 

temperature, which describe the real state of the rod at 0 2t n    (a quarter of the period).On the figures 

4,6,8,10 (a,b)  there are the amplitudes of the displacements and the temperature along the rod by different 

frequencies:  w = 0.1,1,10,100.   

 

Here you can see  the formation of standing waves. At low frequencies  0.1   the middle of the rod is fixed, 

the maximum longitudinal displacement observed on the last quarter of the length of the rod. A max temperature 

observed   in the middle of the rod. At low frequencies, the maximum temperature in the middle of the rod is 

higher than the temperature at its ends. 

  

a                                                                             b 

Figure 2 - The amplitudes of the displacement (a) and the temperature (b) 

along the  rod:  =0.1 

 

By increasing the frequency the number of local extremum increases, the amplitude of the temperature increase 

in comparison with its value at the ends of the rod. There is a nodal point where the displacement and temperature 

are close or equal to zero. But extremes of amplitudes and temperatures are shifted relative to each other (where 

displacements are zero there are a maximum of amplitudes of the temperature). 

 

In the table 1 it's shown the maximum amplitude of the displacement and the temperature in the considered 

frequency range. With increasing the frequency the amplitude of the movement rises sharply and then begins to 

fall. The same is observed for temperature. By temperature fluctuations at the ends the maximum amplitude of 

the temperature fluctuations in the rod increased about 20 percentages. 
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Figure 3 - Displacements and temperature of  the rod at t=2πn/ω  and t=2πn/ω+π/2ω: 0.1   

 

   
 

a                                                                       b 

Figure 4 - The amplitudes of displacement (a) and temperature (b) along the  rod:  =1 

 

 
 

Figure 5 - Displacements and temperature of the rod at t=2πn/ω  and t=2πn/ω+π/2ω: 1   
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Figure 6 - The amplitudes of displacement (a) and temperature (b) of the  rod:  =10 

 

 
a                                                                         b 

Figure 7 - Displacements and temperature of  the rod at t=2πn/ω  and t=2πn/ω+π/2ω: 10   

 

 

  
 

Figure 8 - The amplitudes of displacement (a) and temperature (b) of the  rod:  =100 
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a                                                                           b 

Figure 9 - Displacements and temperature of the rod at t=2πn/ω  and  t=2πn/ω+π/2ω: 100   

 

Table 1. The maximum amplitude of the displacements and temperature 

ω U max T max 

0.1 0.0022 1.001 

1 0.032 1.168 

10 0.443 1.2 

100 0.28 1.04 

   

PERIODIC OSCILLATION OF THERMOELASTIC RODE 
At more difficult periodic processes it is necessary to write the boundary conditions and the operating sources into 

Fourier's series on time. Let   is period of oscillation of external actions: 

( , ) ( , ), 0, 1, 2, 3,...., 1,2j jF x t F x t n n j        

and given boundary conditions have the same period: 

( , ) ( , ), 0, 1, 2, 3,...., 1,2,3,4j jf x t f x t n n j        

 

Then they can be presented in the form of Fourier series: 
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Here 
1

0 2    is basic frequency of oscillation, 0 2 /n n n     .  

 

Then we can build the decision of BVP in the form of Fourier's series   

( , ) ( )exp( ), ( , ) ( )exp( )n n n n

n n

u x t u x i t x t x i t         

and to find  complex amplitude functions ( ),nu x ( )n x  for each harmonica, following  to this method. 

 

CONCLUSION 
Using the system of equations (9) it is possible to build solutions of any of the set BVPs 1-4, and also with the 

mixed conditions on the ends of a rod. Similarly on a basis this system of equations the semi-inverse and inverse 

BVPs can be solved, when number of boundary conditions on the different ends of a rod is various. The main 

thing - them has to be four. 

 

The offered calculation procedure has to find application at research of support of buildings and constructions, 

thermos tension state of rods designs of different functions under actions of external forces of different nature and 

also by their heating and cooling. 
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